CEN/CLC/ITC 22/WG 3 N 90

g — |

CENICLCIJTC 22/WG 3 "Quantum Computing and Simulation"

Convenor: Lefebvre Catherine Mme

Proposal for adding ISA_functionality

Document type Related content Document date Expected action

Meeting / Document ;. oo VIRTUAL 27 Nov 2024 2024-11-07 INFO
for discussion

Description

Dear expert,

Please find attached a proposal for adding ISA functionality linked with the Work Item project on
Cryogenic solid state quantum computing.

This document will be discussed during our next meeting.

Kind regards,

https://sd.cen.eu/documents/open/e61a9d01-35a6-4cbe-bb16-59dba8d38991
http://sd.cen.eu/meetings/155440

g — |

CEN/CLC/JTC 22/WG 3 N xx

CENICLCIJTC 22/WG 3 "Quantum Computing and Simulation"
WG Secretariat: xxNSBxx
Convenor: xxXWGCHAIRXxx

CEN-CLC-JTC 22_N## Proposal_for_adding_ISA_functionality

ocument t Meetin cument date E cted action
on%‘r'f%utiox IT%S%-\%G&OM 9821'318%% F<))(rp gec?glon :
Title Text proposal for ISA in the control software layer
Authors Juan Carlos Boschero (TNO), juan.boschero@tno.nl

Rob van den Brink (Delft Circuits), Rob.vandenBrink@Delft-circuits.com

Organisation TNO

Representing NEN

Work Item N/A

number

Work Item title Cryogenic solid state quantum computing

Summary This document proposes literal text about the ISA functionality for inclusion into
chapter “8 Control Software”. The present text is focussed on the section on
“functional descriptions”, but summarizes some of the topics for the section on
“functional requirements” as well

Motivation The legacy document proposes a software driver layer that includes the ISA without a
description. This proposal adds a detailed description as well as a diagram showing
the ISA/software layer operating in relation to other layers with user input.

Details See next pages.

(also next page)

e Add section 8.1
e Add section 8.2

https://sd.cen.eu/meetings/146317

Start of literal text proposal

8. Layer 4 - Control Software

The control software refers to the software systems and tools designed to manage, coordinate and optimize
operations dictated by higher level languages. Thus, the software plays a crucial role in translating higher-level
quantum assembly instructions into executable instructions that can be processed by quantum processors.

This layer may include an instruction set architecture (ISA), error correction and calibration functionalities (as
seen in Figure 8.1).

e ISA (Instruction set architecture) refers to a lower-level method of defining operations on a quantum
computer. Instead of defining specific gates, this layer defines gates (or other instructions) as operations,
using pulses pulsed for a certain time, on specific qubits. An example of an instruction set architecture is
pulse level programming where a user can specify wave pulses on qubits instead of gates. This requires
knowledge of the system’s control equipment as well as the topology and qubit nature.

¢ Error correction refers to all low-level techniques to enable error-robust physical operations. Error
correction is mitigated by the implementation of strategies to detect and correct potential errors that can occur
during the computation.

¢ Calibration refers to low-level methods to stabilize the hardware by continuous monitoring of hardware
performance to maintain optimal operation.

8.1 Functional Descriptions

8.1.1 Instruction Set Architecture

The aim of an instruction set architecture (ISA) is to convert a sequence of machine-specific instructions from higher
layers into commands for the control electronics, to control individual qubits. As such the ISA has full awareness of
the underlying quantum hardware and its topology.

Due to the ISA’s knowledge on the quantum hardware, it also has the responsibility of handling the execution timings
and scheduling of individual instructions, such that higher layers should only know their sequence.

On input, the ISA may receive for instance instructions from higher layers to change the quantum state of qubits
(gate-instructions, read-out qubits (measurement instructions)) or any other instructions to interact with all
available qubits. These instructions can be fed to the ISA as for instance (binary) machine instructions, as (ascii)
human readable instructions, or as function calls. Instructions intended for controlling one or two qubits may be fed
one by one to the ISA, but it is more efficient if an ISA can handle many of them in parallel as a "vector" of instructions
to interact with an ensemble of qubits simultaneously.

Higher layers may push these instructions into a buffer within the ISA each time the ISA signals to be ready for it.
Alternatively, an ISA may also poll these instructions out from a buffer within higher layers each time the execution of
a previous group of instruction has completed. This includes the polling of requests and instructions given by many
users. In all cases, it requires a well-defined interface (API) with the above layer(s), as well as a well-defined
instruction set language (such as OpenPulse [1] or Pulser [2]).

An ISA may handle gate-level instruction as well as pulse-level instructions. Both may be mixed in a single
compilation pass for bypassing specific gate instructions, which can be parsed in the SDK by the user. Gate level
instructions are considered to be any set of operations that can be parsed onto universal gate based quantum
computers regardless of the hardware while pulse level instructions are operations that are heavily dependent on the
system’s physical architecture. The ISA will thus support instructions to specify the exact waveform of a pulse to be
fired to a specific qubit, as well as an ensemble of pulses where each pulse has its own waveform and relative delay.

The common way of sending instructions to the ISA are via higher level layers such as the asembler or programming
layer. Alternatively a user may be allowed by the communication module to access the control software layer directly
or via the hardware abstraction layer, and supply ISA readable instructions directly.

On output, the ISA sends commands to the control hardware, to fire for instance pulses to qubits or to read-out theig
response via a measurement. This requires that the ISA is fully responsible of the timing of all these commands.

If a pulse is to be applied to a qubit, the ISA may calculate its characteristics on the fly, such as waveform / pulse-
shape and magnitude. But it may also read predefined characteristics from a library created by other software units,
stored somewhere in the control software layer or in the control electronics layer.

In all cases, it requires a well-defined interface (API) with the control electronics(s) as well as a well-defined

command-set.

Figure 8.1 illustrates from an example work-flow of how an ISA contextually may interact with other functionalities in
the stack. When multiple users access the quantum computer, the communication module verifies at which layers
they may access the full stack.

e Ifa (production) user may only access the stack from the top of the assembly layer (or higher layers), the
assembler compiler/interpreter will then convert assembly instructions into hardware-abstracted ones for the
hardware abstraction layer. These instructions are then compiled into machine-specific code by the control
software layer, where the instruction set architecture optimally schedules the user’s program. It also
determines the program’s placement in relation to other users’ tasks, ensuring efficient execution across the
system.

e Ifa more dedicated user/designer may also access the stack from the top of the control software layer, he
should be fully aware of the hardware-specific aspects of the quantum computer and generate machine-
specific instructions for the ISA himself.

......... »
& Communication module !
Application layer !
! Programming layer SDKIAPI i
Access rights H
& Authentication '

A

&—— Command
Optional instruction : ‘L

<«—— Instruction !
H Hardware
<— signal ! | abstraction layer <:>

Control software

o_
—

Software
control
electronics

501U 28|3 01 U0

Hardware
control
electronics

Tt

Control highway

Quantum devices

Figure 8.1 Workflow of instruction set architecture functionality. The colored boxes denote the
layer (with a corresponding title) and the arrows show the different information type
exchanged.

Editor’s Note/questions:

Should ISA be responsible for knowing priority of users for program scheduling?

Hardware abstraction layer local or non-local?

Instruction, signal and commands correct?

Assembly layer obfuscates many specific commands that may be relevant to the ISA (compiling/decompiling),
how do we deal with this?

8.1.2 Calibration
Editor’s Note: Contributions are invited to fill-in this section

8.1.3 Error Correction
Editor’s Note: Contributions are invited to fill-in this section

8.2 Functional Requirements

8.2.1 Instruction Set Architecture
Editor’s Note: Contributions are invited to fill-in this section. Topics for considerations are:
The instruction set architecture requires:
¢ Hardware specifications including:
= Topology of the backend
Time parameters of pulses
Possible waveforms/pulse shapes
Accessible qubits (global vs local pulses)
Scheduling restrictions i.e minimum time per sequence
Qubit dead times
Feedback from communication module between device backend and API
® Pre-compilation error handling supplied to user
¢ Compilation of quantum assembly code to instruction set architecture

Bibliography

[1] Cross, Andrew, et al. “OpenPulse Grammar — OpenQASM Live Specification Documentation.” Openqasm.com, 2019,
opengasm.com/language/openpulse.html. Accessed 6 Sept. 2024.

[2] “Pulser — Pulser 0.19.0 Documentation.” Readthedocs.io, Pulser Development Team, 2022,
pulser.readthedocs.io/en/stable/. Accessed 6 Sept. 2024.

End of literal text proposal

